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Abstract

This paper examines the effect of damage location and size on the modal sensitivity of suspended cables. A numerical

finite difference approach that takes account of sag-extensibility and bending stiffness is programmed and adapted to

investigate the modal behaviour of suspended cables with induced damage. The finite difference program developed is used

to conduct an extensive parametric study on 12 cables with different combinations of sag-extensibility and bending

stiffness parameters. A systematic study of the dynamic behaviour of the cables under various damage cases is carried out

and original findings are thoroughly discussed. It is shown that despite the complexity of the relationship between damage

and the dynamic properties of the cables, definite trends could be identified, especially for out-of-plane vibrations.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Cables are widely used as structural elements especially when lightness, flexibility and aesthetics are key
design factors. However, cable structures including overhead transmission lines, cable-supported roofs, guyed
towers, suspension and cable-stayed bridges are generally exposed to wind, rain, ice and long-term fatigue
during their design life. Subjected to such loadings, the cables become increasingly vulnerable to damage and
deterioration, making their condition assessment a priority to prevent premature or catastrophic failure.

Considerable research has been devoted to the general design and analysis of cable structures and a
thorough account of these investigations can be found in Refs. [1–3]. Cable forces have been frequently
estimated from measured natural frequencies and practical formulas have been developed for this purpose [4].
However, only recently have the combined effects of sag-extensibility and bending stiffness been fully and
efficiently considered in the analysis [5,6]. Most of the literature focuses on the dynamic analysis of cables of
uniform sections. To the author’s knowledge, there is no published work dedicated to a systematic study of the
dynamic behaviour of a suspended cable under the effect of a localized damage. The aim of the present paper
is to investigate the relationship between damage location, damage size, and the corresponding changes
in the natural frequencies and mode shapes of suspended cables. To this end, a finite difference scheme
originally proposed by Mehrabi and Tabatabai [5] is programmed and adapted herein to analyse the in-plane
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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and out-of-plane free vibrations of cables with varied properties to cover a wide range. Salient features of the
modal response are thoroughly discussed.

2. Finite difference formulation

The finite difference formulation used is based on an accurate mathematical model, taking account of sag-
extensibility and bending stiffness effects. Only the basic elements of the formulation are briefly reviewed for
convenient reference in this section. A detailed description of the method can be found in Ref. [5].

2.1. Static profile

The horizontal span suspended cable shown in Fig. 1 is in equilibrium under the effect of its own weight
uniformly distributed along its arc length. Considering a differential horizontal length dx of the cable, and
neglecting the effects of axial rigidity and sag on the static profile, equilibrium of forces yields the following
differential equation governing the static deflected shape z

d2

dx2
EI

d2z

dx2

� �
�Hs

d2z

dx2
�mg ¼ 0 (1)

in which EI is the cable bending rigidity; Hs the horizontal component of the static cable tension; g the
gravitational acceleration; mg the cable weight per unit length and x a horizontal Cartesian coordinates system
with origin located at the left support of the cable. Eq. (1) is subject to the boundary conditions

zð0Þ ¼ 0; zðLÞ ¼ 0. (2)
Fig. 1. Static and dynamic analysis of a damaged suspended cable.
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Using a central finite difference scheme, Eq. (1) is transformed into a system of linear equations that can be
cast in a matrix form

Ksz ¼ gm, (3)

where z is a vector containing the static deflections zi; i ¼ 1; . . . ; n, n being the number of nodes in the
discretized cable. The mass vector m and static stiffness matrix Ks are defined by

mT ¼ ½m1;m2; . . . ;mi; . . . ;mn�, (4)

Ks ¼

½a1 þ ð�1Þ
pb1� k1 g1 0 . . . . . . . . . . . . . . . . . . 0

Z2 a2 k2 g2 0 . . . . . . . . . . . . . . . 0

�b3 Z3 a3 k3 g3 0 . . . . . . . . . . . . 0

0 . . . 0 �bi Zi ai ki gi 0 . . . 0

0 . . . . . . . . . . . . . . . 0 �bn�1 Zn�1 an�1 kn�1

0 . . . . . . . . . . . . . . . . . . 0 �bn Zn ½an þ ð�1Þ
pþ1gn�

26666666664

37777777775
, (5)

where mi is the mass per unit length, p ¼ 1 for fixed end condition, p ¼ 2 for pinned end condition and where
for i ¼ 1; . . . ; n

ai ¼ �
2

a4
ðEIiþ1 � 5EIi þ EIi�1Þ þ

2Hs

a2
,

bi ¼
1

2a4
ðEIiþ1 � 2EIi � EIi�1Þ,

gi ¼
1

2a4
ðEIiþ1 þ 2EIi � EIi�1Þ,

ki ¼ �
2

a4
ð3EIi � EIi�1Þ �

Hs

a2
,

Zi ¼
2

a4
ðEIiþ1 � 3EIiÞ �

Hs

a2
. ð6Þ

Eq. (3) is solved numerically herein using Gaussian elimination.
2.2. Dynamic behaviour

The horizontal span suspended cable is now subjected to small in-plane and out-of-plane vibrations around
its static profile. Again, the equations of motion result from equilibrium of forces of a differential horizontal
length dx of the cable

q2

qx2
EI

q2v
qx2

� �
�Hs

q2v
qx2
�Hd

d2z

dx2
þm

q2v

qt2
¼ 0, ð7Þ

q2

qx2
EI

q2w
qx2

� �
�Hs

q2w
qx2
þm

q2w

qt2
¼ 0, ð8Þ

in which v and w are the in-plane and out-of-plane components of cable motion, respectively, and Hd the
dynamic horizontal cable tension. It is worth to mention that the in-plane and out-of-plane motions are
assumed to be uncoupled due to the absence of horizontal static load and that the longitudinal component of
cable motion is also neglected.

Expressing the displacements in terms of their complex-valued frequency responses and using the separation
of variables technique derived by Mehrabi and Tabatabai [5], Eqs. (7) and (8) are transformed into two
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eigenvalue problems

d2ðEIÞ

dx2

d2v̄

dx2
þ 2

dðEIÞ

dx

d3v̄

dx3
þ EI

d4v̄

dx4
�Hs

d2v̄

dx2
þ

R L

0 ðd
2z=dx2Þv̄dxR L

0

½ðdz=dxÞ2 þ 1�3=2

EA
dx

�mo2v̄ ¼ 0, (9)

d2ðEIÞ

dx2

d2w̄

dx2
þ 2

dðEIÞ

dx

d3w̄

dx3
þ EI

d4w̄

dx4
�Hs

d2w̄

dx2
�mo2w̄ ¼ 0, (10)

where v̄ and w̄ are the frequency response functions of v and w, respectively.
Again using central difference discretization, the two differential equations are transformed to yield two

systems of equations

Kvv̄ ¼ o2
vMv̄, ð11Þ

Kww̄ ¼ o2
wMw̄, ð12Þ

where ov and ow are the in-plane and out-of-plane eigenfrequencies, M is a square matrix with nodal mass
vector m elements on the diagonal and zero elsewhere, and Kv and Kw are defined by

Kv ¼ Ks þ rsT, ð13Þ

Kw ¼ Ks ð14Þ

in which Ks is the static stiffness matrix defined in Eq. (5), and vectors s and r are given by

sT ¼ ½s1; s2; . . . ; si; . . . ; sn�; si ¼
ziþ1 � 2zi þ zi�1

a2
, (15)

rT ¼ ½r1; r2; . . . ; ri; . . . ; rn�; ri ¼
siPn

i¼1

½ððziþ1 � zi�1Þ=2aÞ2 þ 1�3=2

EAi

, (16)

a being the length of finite difference discretization.
The eigenvectors obtained by solving the eigenproblems (11) and (12) are orthonormalized with respect to

the mass matrix. To alleviate expressions, the v and w indices denoting in-plane and out-of-plane vibration will
be dropped when there is no risk of confusion.

3. Program validation

The finite difference formulation described has been programmed and linked to general purpose
eigenproblem solvers. To validate the computer program developed, the first three in-plane and out-of-
plane frequencies of the main span cable of the Tsing Ma Suspension Bridge are computed. The geometric and
mechanical properties of the cable were reported by Xu et al. [7] based on design drawings. The length and sag
of the main span cable are 1397.8 and 112.5m, respectively. Other properties include the cross-sectional area
A ¼ 0:759m2, modulus of elasticity E ¼ 200GPa, mass per unit length m ¼ 5832 kg=m, and a horizontal
component of the tension force Hs ¼ 122:64MN. In the absence of relevant data, the moment of inertia is
calculated herein based on the gross area of the cable although this assumption is somewhat conservative [1],
each of the cables being in fact made of 91 strands of parallel galvanized steel wires [7]. The cable is divided
into 100 finite difference elements.

Tables 1 and 2 list the in-plane and out-of-plane frequencies computed using the finite difference program
developed and those obtained by Ni et al. [6] based on a finite element modelling. Calculations are carried out
using both assumptions of pinned and fixed end supports. Measurements from a series of ambient vibration
tests on the same bridge as described in Refs. [6,8] are also presented. Comparison of the results reveals that
the frequencies computed using the program developed agree well with those obtained by the finite element
formulation or from measurements. This comparison validates the accuracy of the programmed finite
difference formulation. In the subsequent sections, this program is used to investigate free vibrations of locally
damaged suspended cables.
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Table 1

Comparison of in-plane frequencies of the main span cable of the Tsing Ma Suspension Bridge (Hz)

Modes Fixed ends Pinned ends Measurementsb

FDa FEMb FDa FEMb

1 0.1048 0.1020 0.1038 0.1008 0.1020

2 0.1505 0.1488 0.1473 0.1471 0.1430

3 0.2100 0.2091 0.2080 0.2081 0.2070

aComputed using the finite difference program developed.
bReported in Ref. [6].

Table 2

Comparison of out-of-plane frequencies of the main span cable of the Tsing Ma Suspension Bridge (Hz)

Modes Fixed ends Pinned ends Measurementsb

FDa FEMb FDa FEMb

1 0.0524 0.0528 0.0519 0.0522 0.0530

2 0.1048 0.1052 0.1038 0.1040 0.1050

3 0.1573 0.1578 0.1558 0.1557 0.1560

aComputed using the finite difference program developed.
bReported in Ref. [6].
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4. Cable models

As mentioned before, only recently have research efforts been concentrated on studying the interaction
between sag, bending stiffness and cable vibrations [1,4–6]. This interaction has generally been investigated by
defining two dimensionless parameters x and l2 characterizing the bending stiffness and sag-extensibility,
respectively

x ¼ L

ffiffiffiffiffiffi
Hs

EI

r
, ð17Þ

l2 ¼
EAL

HsLe

mgL

Hs

� �2

, ð18Þ

where Le is a length a little larger than the cable span, defined by

Le ¼

Z L

0

ds

dx

� �3

� Lð1þ 8f 2
Þ ð19Þ

� L 1þ
1

8

mgL

Hs

� �2
" #

ð20Þ

and where f defines the sag-to-span ratio.
The bending stiffness parameter, x, measures the relative importance of cable and beam actions: when x is

very small, beam action predominates, and when x is very large, cable action is predominant. Flexural rigidity
has generally been ignored in most cable problems characterized by a large x parameter [1]. Cables with
moderate-to-large diameters as those used for suspension bridges are however characterized by small to
moderate x parameters and bending stiffness effects should be taken into account in their analysis, especially
when accurate modelling is needed as for their structural identification [6].
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Table 3

Geometric and mechanical properties of the investigated cables

Cable no. m (kg/m) E (Pa) A (m2) I (m4) H (N) l2 x

1 350 1:60� 1010 7:85� 10�3 5:00� 10�6 2:90� 106 0.60 602.68

2 350 1:60� 1010 7:85� 10�3 1:50� 10�5 2:90� 106 0.60 347.96

3 350 1:60� 1010 7:85� 10�3 3:00� 10�4 2:90� 106 0.60 77.81

4 400 2:00� 1011 2:85� 10�3 5:00� 10�7 3:00� 106 3.24 547.72

5 400 2:00� 1011 2:85� 10�3 1:50� 10�6 3:00� 106 3.24 316.23

6 400 2:00� 1011 2:85� 10�3 3:00� 10�5 3:00� 106 3.24 70.71

7 4 6:45� 1010 6:00� 10�4 7:00� 10�9 1:92� 104 83.75 652.11

8 4 6:45� 1010 6:00� 10�4 2:10� 10�8 1:92� 104 83.75 376.50

9 4 6:45� 1010 6:00� 10�4 4:20� 10�7 1:92� 104 83.75 84.19

10 380 2:00� 1011 7:85� 10�3 2:00� 10�7 1:00� 106 214.47 500.00

11 380 2:00� 1011 7:85� 10�3 6:00� 10�7 1:00� 106 214.47 288.68

12 380 2:00� 1011 7:85� 10�3 1:20� 10�5 1:00� 106 214.47 64.55
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The sag-extensibility parameter, l2, also known as the Irvine or sag-independent parameter [1], accounts for
combined axial and geometric stiffness effects. Geometric stiffness originates mainly from sag and angle-of-
inclination of the cable. A detailed discussion of these effects can be found in Ref. [1], but it is worth
mentioning that, based on a literature survey, Johnson et al. [9] concluded about some typical values of l2:
from 0 to 4 for stay cables on cable-stayed bridges, around 90 for overhead transmission lines and in the range
of 140–350 for the main cables of suspension bridges.

To cover a wide range of cases within the framework of the present research, cable models with the same
span length L ¼ 100m and different combinations of sag-extensibility and bending stiffness parameters are
studied to evaluate the effect of damage on their dynamic behaviour. Results are presented for 12 cables with
the geometric and mechanical characteristics listed in Table 3. Each cable is subdivided into 100 equi-length
elements, generating 101 nodes for each finite difference model.
5. Numerical results

5.1. Study parameters

It is expected that an induced damage to the cable affects its frequencies and mode shapes, but it is not clear
how definite are the trends of such influence. In the following sections, this interaction is investigated through
examination of the effects of damage location and size on the first in-plane and out-of-plane frequencies and
mode shapes of the cable.

Damage is induced in each cable model by locally reducing its cross-sectional area and moment of inertia, to
simulate a section loss or a stiffness degradation. It is, however, assumed that the cable mass matrix remains
unchanged after damage. The damage location is defined by the dimensionless coordinate ratio xd=L, where
xd is the distance from cable origin to the damaged section, as illustrated in Fig. 1.

Comparison between the damaged cases and a reference undamaged case is carried out by calculating a
frequency percentage change o�i and an eigenparameter /�i defined by

o�i ¼
eoi � o

o
� 100, ð21Þ

/�i ¼
e/ieo2

i

�
/
o2

, ð22Þ
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where o and / are the first in-plane (or out-of-plane) frequency and corresponding mode shape, eoi and e/i

denote the damaged cable first in-plane (or out-of-plane) frequency and corresponding mode shape when
damage is introduced at element i of the cable model. It is worth mentioning that the eigenparameter /� was
successfully used to study the vibrations of damaged beam structures as described in Ref. [10].

5.2. Effect of damage location

Using the finite difference scheme programmed by the author, the eigenparameters defined in Section 5.1 are
determined for damage located in turn at each of the 100 finite difference elements of each cable model. For
purpose of comparison, all cable models are subjected to the same intensity of damage by locally reducing the
cross-sectional area by 50% and the corresponding moment of inertia by 75%. Owing to space limitations,
results are presented only for damage located at distances xd ¼ 0:1L, xd ¼ 0:2L, xd ¼ 0:3L, xd ¼ 0:4L and
xd ¼ 0:5L from the cable support. In-plane and out-of-plane vibration sensitivity to damage are discussed
separately in the next two subsections.

5.2.1. In-plane vibration

Table 4 contains the percentage change of the first in-plane frequency as a function of damage location.
These results are also illustrated in Fig. 2. By comparing the natural frequencies of the damaged and
undamaged cables, it can be seen that the first in-plane frequency of cables with small bending stiffness x
(cables 3, 6, 9 and 12) increases when damage is induced, while for the other cables with medium and high
bending stiffness, the first in-plane frequency decreases for the same type of damage. The magnitude of relative
change depends on damage location, bending stiffness and sag-extensibility. By examining the curves in Fig. 2,
two general trends can be identified:
�

Ta

Per

Ca

1

2

3

4

5

6

7

8

9

10

11

12
For cables with small sag-extensibility (cables 1–6), the curves exhibit a monotonic change in first in-plane
frequency when damage location varies from xd ¼ 0:1L to xd ¼ 0:5L. It is noted, however that the rate of
this change increases as sag-extensibility decreases. In other terms, for cables with high bending stiffness
(cables 1 and 4 for example), damage occurring either at midspan or near one of the supports, will produce
slightly the same decrease in their first in-plane frequency. Conversely, the first in-plane frequency of a cable
with a small bending stiffness (cables 3 and 6) damaged at midspan is around 4–6% times higher than its
frequency when damaged near the support. It is also interesting to note that for this type of cable, damage
effect is maximum when it occurs at midspan, with corresponding relative change varying from about
�0:02% for cable 1 to about 6.5% for cable 6 as shown in Table 4. By comparing the percentage frequency
change values listed in Table 4, it is clear that for a given bending stiffness, the effect of damage on the first
in-plane frequency increases as sag-extensibility decreases. Finally, since all the curves are symmetric about
ble 4

centage change in the first in-plane frequency as a function of damage location

ble no. xd ¼ 0:1L xd ¼ 0:2L xd ¼ 0:3L xd ¼ 0:4L xd ¼ 0:5L

�0.0240 �0.0248 �0.0259 �0.0269 �0.0273

�0.0252 �0.0327 �0.0427 �0.0511 �0.0543

0.3685 1.7575 3.7096 5.5281 6.2967

�0.1041 �0.1043 �0.1051 �0.1061 �0.1065

�0.0983 �0.1014 �0.1101 �0.1188 �0.1224

�0.0229 0.8851 2.3920 3.8820 4.5278

�0.0011 �0.0028 �0.0028 �0.0011 0.0000

�0.0090 �0.0240 �0.0241 �0.0092 0.0000

1.9667 6.4453 6.9853 2.2274 0.0000

�0.0030 �0.0079 �0.0080 �0.0030 0.0000

�0.0253 �0.0676 �0.0680 �0.0261 0.0000

1.3062 4.5498 5.4781 2.0081 0.0000
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Fig. 2. Percentage change in the first in-plane frequency as a function of damage location.
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cable midspan, damage occurring at symmetric locations about this point yield the same effect on first in-
plane frequency.

�
 For cables with medium to high sag-extensibility (cables 7–12), the curves indicate a non-monotonic change
in the first in-plane frequency when damage location varies from xd ¼ 0:1L to 0:5L. As can be seen, the
relative change in frequency is maximum when damage is located around xd ¼ 0:25L, and zero when
damage occurs at the middle of the cable span, meaning that a damage located midspan has no effect on the
first in-plane frequency. Again, all the curves are symmetric about the middle of the cable span but also
almost symmetric about xd ¼ 0:25L, thus whether damage is located at xd ¼ 0:2L, xd ¼ 0:3L, xd ¼ 0:7L or
xd ¼ 0:8L will have the same effect on first in-plane frequency. Maximum relative change varies from about
�0:003% for cable 7 to about 7.0% for cable 9. As for cables 1–6, comparison of the percentage frequency
change values listed in Table 4 reveals that for a given bending stiffness, the effect of damage on the first in-
plane frequency globally increases as bending stiffness decreases.
Further understanding of these responses can be gained by examining the relationship between in-plane

frequencies of symmetric and antisymmetric mode shapes on one hand, and bending stiffness and sag-
extensibility parameters on the other. Mehrabi and Tabatabai [5] and Ni et al. [6] developed relation surfaces
of first in-plane frequencies as a function of the l2 and x parameters based on finite element and finite
difference formulations. These studies have shown that for the first in-plane and out-of-plane frequencies,
these relation surfaces can be approximated without great loss of accuracy by similar curves developed for
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cable vibrations with bending stiffness effects excluded [1,11]. The points of intersection of the curves are
referred to as frequency crossover, defining the transition of dynamic behaviour of a cable from a taut string to
an inextensible chain. Thus the first in-plane vibration mode of cables 7–12 is antisymmetric since their sag-
extensibility parameter is larger than the first frequency crossover value l2 ¼ ð2pÞ2. Inducing damage at
midspan of cables 7–12 is equivalent to introducing a spring-restrained hinge at a location which coincides
with an internal node of the first antisymmetric mode shape. Consequently, such damage has no effect on the
dynamic behaviour of cables 7–12 as illustrated in Table 4 and Fig. 2.

It is also important to investigate the effect of damage location on the eigenparameters /�i defined by
Eq. (22). Fig. 3 portrays variations of this parameter when damage is induced at distances xd ¼ 0:1L,
xd ¼ 0:2L, xd ¼ 0:3L, xd ¼ 0:4L and xd ¼ 0:5L from the origin of each of the 12 cables. Again, the curves
display different patterns depending on bending stiffness and sag-extensibility parameters. For cables with
small sag-extensibility and high bending stiffness (cables 1 and 4), the eigenparameters are only slightly
sensitive to damage location which can be hardly detected even by closer examination of the curves. The
eigenparameters of cables with small sag-extensibility and medium bending stiffness (cables 2 and 5) are more
sensitive to damage, yet the flat shape of the curves in some cases requires careful reading to get a precise
indication of damage location as for cable 5 for example. In fact, when detectable, damage location
corresponds to peaks on the eigenparameter curves, and the sharper is the peak, the easier and more exactly
Fig. 3. Effect of damage location on the in-plane mode shape eigenparameter /�: �� �� damage at xd ¼ 0:1L; � � � damage at xd ¼ 0:2L;

��� damage at xd ¼ 0:3L; �� damage at xd ¼ 0:4L; � � �� damage at xd ¼ 0:5L.
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damage can be located. It is clear from Fig. 3 that sensitivity to damage location increases significantly
for cables with small sag-extensibility and bending stiffness (cables 3 and 6) and cables with medium to high
sag-extensibility independently of their bending stiffness (cables 7–12). Damage location can indeed be easily
Fig. 4. Percentage change in the first out-of-plane frequency as a function of damage location.

Table 5

Percentage change in the first out-of-plane frequency as a function of damage location

Cable no. xd ¼ 0:1L xd ¼ 0:2L xd ¼ 0:3L xd ¼ 0:4L xd ¼ 0:5L

1 �0.0004 �0.0014 �0.0027 �0.0038 �0.0042

2 �0.0034 �0.0124 �0.0235 �0.0326 �0.0360

3 0.4531 1.9276 3.9425 5.7943 6.5714

4 �0.0006 �0.0021 �0.0040 �0.0055 �0.0061

5 �0.0049 �0.0179 �0.0341 �0.0472 �0.0522

6 0.3941 1.7502 3.5876 5.2633 5.9614

7 �0.0003 �0.0011 �0.0020 �0.0028 �0.0031

8 �0.0025 �0.0091 �0.0172 �0.0238 �0.0264

9 0.5421 2.2481 4.6037 6.8055 7.7440

10 �0.0008 �0.0030 �0.0057 �0.0078 �0.0087

11 �0.0069 �0.0255 �0.0487 �0.0674 �0.0746

12 0.3555 1.6775 3.4535 5.0711 5.7437
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and clearly identified by peaks on the corresponding curves, except when this location is at midspan, leading to
/�i ¼ 0 along the cable. This observation confirms that the mode shapes and frequencies corresponding to
damage introduced at midspan remain in fact unchanged after damage since midspan coincides with an
internal mode shape node as explained before. It is also observed that the /�i curves of cables 7–12 do not have
a constant sign, which is another consequence of the antisymmetric modes.

5.2.2. Out-of-plane vibration

The same systematic procedure described in the previous section is applied to study the effect of damage
location on out-of-plane vibration. Table 5 presents percentage change values of the first out-of-plane
frequency as a function of damage location. These results are also illustrated in Fig. 4. As for in-plane
vibration cases, the induced damage yields an increase in the first out-of-plane frequencies of cables with small
bending stiffness and a decrease in the frequencies of cables with medium to high bending stiffness. However,
it is noted that the percentage changes follow the same trend for all the cables since there is no frequency
crossover phenomenon. The figure shows a monotonic frequency change when damage location varies from
xd ¼ 0:1L to xd ¼ 0:5L, with a maximum being reached when damage is at midspan. It is also noted that the
rate of frequency change against damage location is much less sensitive to sag-extensibility than for in-plane
Fig. 5. Effect of damage location on the out-of-plane mode shape eigenparameter /�: ���� damage at xd ¼ 0:1L; � � � damage at

xd ¼ 0:2L; ��� damage at xd ¼ 0:3L; �� damage at xd ¼ 0:4L; � � �� damage at xd ¼ 0:5L.
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vibration. Thus, for the 12 cables, a damage occurring at mid span produces a frequency change of the order
of 3 times that generated if damage has occurred near the support. By comparing the frequency values listed in
Table 5, it can again be concluded that for a given bending stiffness, the effect of damage on the first out-of-
plane frequency increases as sag extensibility decreases. Fig. 4 also indicates that damage occurring at
symmetric locations about cable midspan produces the same effect on the first out-of-plane frequency.

The effect of damage location on the out-of-plane eigenparameters /�i is illustrated in Fig. 5 for damage
induced at distances xd ¼ 0:1L, xd ¼ 0:2L, xd ¼ 0:3L, xd ¼ 0:4L and xd ¼ 0:5L from the left support of each
of the 12 cables. Again, the curves display the same patterns independently of the bending stiffness and sag-
extensibility. As can be seen, for all the cables, damage location can be clearly identified by pronounced peaks
irrespectively of the damage case considered, sag-extensibility or bending stiffness parameters. This is a very
important feature of out-of-plane vibration that should be advantageously exploited for condition assessment
of suspended cables. Furthermore, it is also observed that the /�i curves of all studied cables keep a constant
sign along the cable span.
5.3. Effect of damage size

The numerical results discussed in Section 5.2 were obtained for a given damage size induced in turn at
different locations on the cables, by applying a 50% reduction of the cross-sectional area and 75% reduction
Fig. 6. Effect of damage size on the percentage change in the first in-plane frequency: � damage case 1; B damage case 2; � damage case

3; n damage case 4; & damage case 5.
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of the moment of inertia. The aim of this section is to study the effect of damage intensity on the modal
behaviour of the cables. Damage size is varied by applying a 90%, 70%, 50%, 30% and 10% reduction of the
cross-sectional area, and corresponding 81%, 49%, 25%, 9% and 1% reduction of the moment of inertia.
These damage cases will be labelled 1–5, respectively. The results obtained are discussed next for in-plane and
out-of-plane vibrations separately.

5.3.1. In-plane vibration

Fig. 6 illustrates the in-plane frequency percentage change for all the cables when a damage of variable size
occurs at locations xd ¼ 0:1L, xd ¼ 0:2L, xd ¼ 0:3L, xd ¼ 0:4L and xd ¼ 0:5L from cable support. For cables
1, 2, 4 and 5, characterized by small sag-extensibility and moderate to high bending stiffness parameters, it is
seen that all damage cases produce a decrease in the first in-plane frequency. Damage case 1 produces the
highest percentage change, followed by damage cases 2, 3, 4 and 5 in decreasing order of importance. It is
interesting to note that for the four cables, the ratio of the percentage change produced by damage case 1 to
that resulting from damage case 2 is almost constant. Ratios between the percentage changes produced by the
other damage cases are also fairly constant. Fig. 6 shows that the same observations are true for cables with
moderate to high sag-extensibility and bending stiffness parameters (cables 7, 8, 10 and 11), but taking into
Fig. 7. Effect of damage size on the in-plane mode shape eigenparameter /�: ���� damage case 1; � � � damage case 2; ��� damage case

3; �� damage case 4; � � �� damage case 5.
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account the antisymmetry of the first in-plane mode shape. All damage cases have no effect on the first in-
plane frequency when localized at midspan, as discussed before. Cables 3, 6, 9 and 12, characterized by a small
bending stiffness parameter, exhibit a completely different trend however. For example, the in-plane frequency
of cable 3 decreases under damage cases 4 and 5, and increases under damage cases 1–3. It is also observed
that maximum frequency change is now associated to damage case 3 instead of damage case 1 as seen in the
previous cases. The response of cable 6 is quite similar to that of cable 3, except under damage case 4 when
variations of o�i against damage location are no longer monotonic. For cables 9 and 12, all damage cases at
midspan have no effect on the in-plane frequency because of mode shape antisymmetry, but it is observed that
in-plane frequencies are amplified under some damage cases as shown for cable 4 under damage case 4. In fact,
for small x parameters, beam action is predominant and bending effects become locally significant.
Consequently, frequencies are highly sensitive to variations of the moment of inertia resulting in rapid changes
in curvature similar to those encountered near load points, studied elsewhere using perturbation methods for
example [1,12].

The effect of damage size on the /� eigenparameter is illustrated in Fig. 7. The curves represent variations of
the /� eigenparameter along cable span for a variable size damage occurring at xd ¼ 0:3L from the left
support of each of the 12 cables. It is clear from the figure that, for cables with small or moderate sag-
extensibility and moderate to high bending stiffness, the findings discussed under Section 5.2.1 are valid for all
damage sizes studied. It is also noted that the curves are sharp enough to identify damage location. It is also
Fig. 8. Effect of damage size on the percentage change in the first out-of-plane frequency: � damage case 1; B damage case 2; � damage

case 3; n damage case 4; & damage case 5.
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noted that all the curves have the same pattern, and that damage case 1 yields the highest /� eigenparameter,
followed by damage cases 2, 3, 4 and 5 in this order. As for the frequency parameter o�, the eigenparameter
curves for cables with a small bending stiffness parameter are highly sensitive to moment of inertia variations
and follow complex trends.

5.3.2. Out-of-plane vibration

Variations of the out-of-plane frequency change parameter o� for all the cables when a damage of variable
size occurs at different locations xd ¼ 0:1L, xd ¼ 0:2L, xd ¼ 0:3L, xd ¼ 0:4L and xd ¼ 0:5L from cable
support are presented in Fig. 8. The figure clearly shows that for cables with small or moderate sag-
extensibility and moderate to high-bending stiffness parameters, all damage cases result in a decrease of the
first in-plane frequency. Again, damage case 1 produces the highest percentage change, followed by damage
cases 2, 3, 4 and 5 in this order. Since the ratios between the percentage changes resulting from the different
damage cases are roughly constant, this result can be exploited to estimate damage size for this type of cables.
Obviously, this argument can be used for all damage locations because of the symmetry of the first out-of-
plane mode shape. For the same reasons discussed above, cables 3, 6, 9 and 12, characterized by a small sag-
extensibility, exhibit a different behaviour, but less complex than that for in-plane vibration.
Fig. 9. Effect of damage size on the out-of-plane mode shape eigenparameter /�: ���� damage case 1; � � � damage case 2; ��� damage

case 3; �� damage case 4; � � �� damage case 5.
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Fig. 9 portrays the effect of damage size on the out-of-plane /� eigenparameter. The curves represent
variations of the /� eigenparameter along cable span for a variable size damage occurring at xd ¼ 0:3L from
the left support of each of the 12 cables. Its is apparent from the figure that for cables with small or moderate
sag-extensibility and moderate to high bending stiffness, the findings discussed under Section 5.2.1 are valid
for all damage sizes studied. It is also observed that damage location is readily apparent on the curves of each
of these cables. The curves have the same pattern, and damage case 1 yields the highest /� eigenparameter,
followed by damage cases 2, 3, 4 and 5 in decreasing order of importance. Again, as discussed for the
frequency percentage changes, cables with a small bending stiffness are highly sensitive to moment of inertia
variations and their trends are difficult to track.

6. Concluding remarks

The present paper was primarily intended to numerically investigate the interaction between damage
location, damage size and the modes of vibration of simple suspended cables. For this purpose, a finite
difference formulation originally developed elsewhere for studying in-plane vibration of cables is extended
herein to investigate out-of-plane vibration as well. The finite difference scheme, which includes sag and
bending stiffness effects, is programmed and adapted to study locally damaged suspended cables. An extensive
parametric study is conducted for twelve types of cables with different combinations of sag-extensibility and
bending stiffness parameters. Percentage change in the first in-plane and out-of-plane frequency and the
corresponding eigenparameter characterizing mode shapes are defined to determine the dynamic behaviour of
the cables under various damage cases. The orders of magnitude of these parameters are shown to be closely
related to the cable parameters. It is clearly shown that despite the complexity of the relationship between
damage and the dynamic properties of the cables, some definite trends could be identified, especially for out-
of-plane vibration. It is important to mention that the present study was carried out under the simplified
assumption of decoupled in-plane and out-of-plane motions and that only single damage scenarios were
considered. Extending the results of this study to cover more complex cases would require further
investigation.
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